

Mark Scheme (Results)

January 2023

Pearson Edexcel International GCSE In Mathematics A (4MA1) Paper 1HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023 Question Paper Log Number P72438A Publications Code 4MA1_1HR_MS_2023 All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

• Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- cao correct answer only
- o ft follow through
- isw ignore subsequent working
- o SC special case
- oe or equivalent (and appropriate)

- dep dependent
- o indep independent
- awrt answer which rounds to
- eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Internation	nal GCSE Maths				
Apart from	questions 6, 13, 14, 15c, 18, 24 (where the mark scheme sta	tes otherwise) the c	correct an	iswer, u	nless clearly obtained from an
incorrect m	ethod, should be taken to imply a correct method.				
1 (a)		$48 < S \leq 54$	1	B1	Allow $48 - 54$ oe
(b)	$(33 \times 4) + (39 \times 14) + (45 \times 18) + (51 \times 19) + (57 \times 5)$ or $132 + 546 + 810 + 969 + 285 (= 2742)$		4	M2	M2 for at least 4 correct products added (need not be evaluated) or
	[lower bound products are: 120, 504, 756, 912, 270] [upper bound products are: 144, 588, 864, 1026, 300]				If not M2 then award:
					M1 for consistent use of value within interval (including end points) for at least 4 products which must be added
					or
					correct midpoints used for at least 4 products and not added
	$\frac{"2742"}{60}$			M1	dep on M1 Allow division by their Σf provided addition or total under column seen
	Correct answer scores full marks (unless from obvious incorrect working)	45.7		Aloe	$45\frac{7}{10}$ or $\frac{457}{10}$
					(accept 46 from correct working)
					Total 5 marks

2			3	M1	For area of 2 different faces (ie not 2 triangles)
	0.5 × 4.8 × 3.6 (= 8.64) oe or 4.8 × 3.6 if clear intention for this to be 2 triangles 7 × 3.6 (= 25.2) 7 × 4.8 (= 33.6) 7 × 6 (= 42) (all measurements with intention to add)			M1	For adding together 5 areas , at least 4 of which are correct NB: $(3.6 + 4.8 + 6) \times 7 (= 100.8)$ is 3 faces
	<i>Correct answer scores full marks (unless from obvious incorrect working)</i>	118		A1	118.1 or 118.08
					Total 3 marks

3	(<i>x</i> =) 3	3	B1
	(y =) 6		B1
	(z =) 10		B1
			Total 3 marks

4	$1600 \times 0.16 (= 256)$ oe or $1 - 0.16 (= 0.84)$ oe		4	M1
	1600 – "256" or 1600 × "0.84" (= 1344)			M1
	$\frac{"1344"}{1400} (= 0.96) \text{ or } \frac{1400 - "1344"}{1400} (= 0.04) \text{ or}$ $\frac{"1344"}{1400} \times 100 (= 96) \text{ or } \frac{1400 - "1344"}{1400} \times 100$			M1
	<i>Correct answer scores full marks (unless from obvious incorrect working)</i>	4		A1 SCB1 for 1856 seen if no other marks awarded
				Total 4 marks

5	$390 \div (8-2) \ (=65) \text{ or} \\ \frac{8}{15} - \frac{2}{15} = 390 \text{ or } \frac{8}{15}x - \frac{2}{15}x = 390 \text{ or} \\ \frac{6}{15} = 390 \text{ or } \frac{6}{15}x = 390 \text{ oe} $		3	M1	$\frac{M2 \text{ for}}{\frac{390 \times 15}{6}} \text{ oe}$
	"65" × (2 + 5 + 8) oe or $\frac{1}{15} = 65$ or $\frac{1}{15}x = 65$ or $\frac{1}{5} = 195$ or $\frac{1}{5}x = 195$			M1	or for 975 seen with further work and a different answer
	Correct answer scores full marks (unless from obvious incorrect working)	975		A1	SCB1 for 52, 130, 208 or 390, 975, 1560 (or 2925) or 97.5, 243.75, 390 (or 731.25)
					Total 3 marks

6	eg $4x + 8y = 60$ or $3x + 6y = 45$ $- \frac{4x - 6y = 4}{(14y = 56)}$ $+ \frac{4x - 6y = 4}{(7x = 49)}$ eg $4x - 6\left(\frac{15 - x}{2}\right) = 4$ or $4(15 - 2y) - 6y = 4$ oe		3	M1	Correct method to eliminate x or y : coefficients of x or y the same and correct operator to eliminate selected variable (condone any one arithmetic error in multiplication) or correctly writing x or y in terms of the other variable and correctly substituting.
	eg $x + 2 \times 4 = 15$ or $7 + 2 \times y = 15$			MI	dep correct method to find second variable using their value from a correct method to find first variable or for repeating above method to find second variable.
	Working required	x = 7, y = 4		A1	dep on M1
					Total 3 marks

7 (a)	0.000 0932	1	B1	
(b)	2.4×10^{5}	2	B2	If not B2, then B1 for 240 000 or
				24×10^4 oe or 2.4×10^a $a \neq 5$
(c)	1.8×10^{121}	2	B2	If not B2, then B1 for 18×10^{120} or
				$1.8 \times 10^b \ b \neq 121$
				Total 5 marks

8 (a)		$3c^2(6cd^2-7)$	2	B2	fully correct or B1 for a correct partial factorisation with at least two terms outside the bracket ie $3c(6c^2d^2-7c)$ or $c^2(18cd^2-21)$ or the fully correct factor outside the bracket with two terms inside the bracket and at most one mistake $3c^2()$
(b) (i)	eg $(y \pm 6)(y \pm 3)$ or y(y + 3) - 6(y + 3) or y(y - 6) + 3(y - 6)		2	M1	or $(y + a)(y + b)$ where $ab = -18$ or $a + b = -3$ or factorisation which expands to give 2 out of 3 correct terms
	[allow use of x rather than y]	(y-6)(y+3)		Al	
(ii)		6, -3	1	B1	ft must come from their factors in (b)(i)
					Total 5 marks

8(b) As we have always done, (ii) must ft from (i)

If they do nothing in (i) and then factorise and give the solutions in (ii) can we give marks retrospectively – yes, as long as nothing in (i) – this could gain M1A1B1 (correct factorisation and correct solutions) or M1A0B1 (factorisation worthy of the method mark, but not correct and ft solutions from incorrect factorisation) or M0A0B1 (incorrect factorisation that is worthy of no marks and then answers which ft from their incorrect factorisation)

What do we do if they give the incorrect factorisation in (i) and then start again in (ii), showing the correct factors and give the correct answers from their factorisation in (ii) as answers? Award M0A0 in (i) and then B1 in (ii)

What do we do if nothing is done in (i) and then we see they have used the quadratic formula and got the answers from this in (ii)? No marks at all M0A0B0

What do we do if the student has got the correct factorisation in (i) and the correct answers in (ii) but also has the quadratic formula shown in (ii)? We award M1A1B1 – assuming that the quadratic formula is a check

What if they factorise and solve in part (i) with nothing in (ii)

M1A1B1 if fully correct or M1A0B1(allowable factorisation) or M0A0B1 (ft from incorrect factorisation that is not allowable) What if they factorise in (i) and give the correct answers for (ii) in (i) and then a different answer for the solution in (ii) Award M1A1 in (i) and B0 in (ii)

What if they factorise correctly and then expand and give the original expression on the answer line – award full marks; the student knows how to factorise and is checking and gives their check as the answer.

9	$\frac{1}{2} \times 7 \times h = 42 \text{ oe or } (h =) \frac{42 \times 2}{7} (= 12) \text{ oe or}$ $3.5^2 + h^2 = y^2 \text{ or } h = \sqrt{y^2 - 3.5^2} \text{ oe}$		4	M1	A correct equation involving the height or a correct expression for height – could be in terms of y
	$y^{2} = \left(\frac{7}{2}\right)^{2} + ("12")^{2}$ oe or $\frac{1}{2} \times 7 \times "\sqrt{y^{2} - 3.5^{2}}" = 42$ oe			M1	(indep) use of <i>their</i> height (any found value that they have called 'height')
	$y = \sqrt{\left(\frac{7}{2}\right)^2 + ("12")^2}$ oe			M1	all values must come from a correct method
	Correct answer scores full marks (unless from obvious incorrect working)	12.5		A1	oe eg $\frac{25}{2}$
					Total 4 marks

10	$\sin 52 = \frac{12 \div 2}{r} \text{ oe } \mathbf{or} \frac{r}{\sin 90} = \frac{6}{\sin 52} \text{ oe}$ $\mathbf{or} \cos(90 - 52) = \frac{12 \div 2}{r} \text{ oe}$ $\mathbf{or} (r^2 =)(12 \div 2)^2 + \left(\frac{12 \div 2}{\tan 52}\right)^2 \text{ oe } \left[r^2 = 6^2 + 4.687^2\right]$ $\mathbf{or} \frac{r}{\sin 38} = \frac{12}{\sin 104} \text{ oe}$		4	M1	A correct trig statement for the radius use of tan must also include a correct Pythagoras statement.
	$r = \frac{6}{\sin 52} (=7.614) \text{ oe}$ or $r = \frac{6}{\cos 38} \text{ oe}$ or $(r =)\sqrt{(12 \div 2)^2 + (\frac{12 \div 2}{\tan 52})^2} [r = \sqrt{6^2 + 4.687^2}] \text{ oe}$ or $\frac{12\sin 38}{\sin 104} \text{ oe}$			M1	A correct method to find the radius of the circle use of tan must also use Pythagoras to find an expression for <i>r</i>
	(Area =) $\pi \times ("7.61")^2$			M1	the radius must come from a completely correct method
	<i>Correct answer scores full marks (unless from obvious incorrect working)</i>	182		A1	Accept 181 - 183
					Total 4 marks

11	(a)		7, 17, 32, 64, 80	1	B1	values seen in table
	(b)			2	M1ft	for at least 4 points plotted correctly at end
						of interval or for all points plotted
						consistently within each interval of the
						associated frequency table (eg at 5, 15, 25,
						35, 45 or 0, 10, 20, 30, 40) at the correct
						height. ft their table dep on one error only
						in the table
		(NB: a 'bar chart' type graph scores zero marks)	correct cf graph		A1	All points plotted correctly at end of
						interval (tolerance 1 small square – there is
						an overlay) and joined with a curve or line
						segments
						accept curve that is not joined at $(0, 0)$.
	(c)	Accept a single value in the range OR ft their cf	33	1	B1ft	Accept a single value in range $32 - 34$ or
		graph		-		ft their cf graph
	(d)	NB: readings are 21 - 23 and 37 - 39 (but for		2	M1ft	For correct use of LQ and UQ and
		this MI these do not have to be correct if				subtraction, ft from a cum freq graph
		correct working is shown – eg lines or marks indicating use of $CE 20$ (or 20.25) and $CE (0)$ (or				provided method is shown – eg a line
		Indicating use of CF 20 (or 20.25) and CF 60 (or 60.75) with an indication on the Time axis at				norizontally to the graph from readings of CF
		the correct points (or they can just show the				20 and CF 00 to meet the graph and then a vertical line to the Time axis(aven if wrongly
		correct readings))				read scale) or clear marks on the graph and
		concer readings))				Time axis that correspond to the correct
						readings or correct values from the Time axis
		Accept a single value in the range OR ft their cf	16		A1ft	Accept a single value in range 15 to 17 or ft
		graph				from their cumulative frequency graph
						provided method is shown eg subtraction of
						values that would be correct for their graph
						Total 6 marks

12	$2^{-4x} = 2^5$ or $-4x = 5$ or $-\frac{4}{5}x = 1$ oe		2	M1
	Correct answer scores full marks (unless from obvious incorrect working)	$-\frac{5}{4}$		A1 oe allow eg $\frac{5}{-4}$
				Total 2 marks

13	eg 10 000x = 3818.18 100x = 38.18 or 1000x = 381.818 10x = 3.818 or 100x = 38.1818 x = 0.3818 oe		2	M1	For selecting 2 correct recurring decimals that when subtracted give a whole number or terminating decimal (37.8 or 378 or 3780 etc) eg 10 000 x = 3818.18 and 100 x = 38.1818 or 1000 x = 381.818 and 10 x = 3.81818 or 100 x = 38.1818 and x = 0.381818 with intention to subtract. (if recurring dots not shown then showing at least one of the numbers to at least 5 sf) or 0.38+0.0018 and eg 100 x = 0.1818, 10000 x = 18.1818 with intention to subtract.
	eg 10 000x - 100x = 3818.18 38.1818= 3780 (9900x = 3780) and $\frac{3780}{9900} = \frac{21}{55}$ or eg 1000x - 10x = 381.818 3.81818= 378 (990x = 378) and $\frac{378}{990} = \frac{21}{55}$ or eg 100x - x = 38.1818 0.381818= 37.8 (99x = 37.8) and $\frac{37.8}{99} = \frac{21}{55}$ or eg 10 000x - 100x = 18.1818 0.181818= 18 and $0.38 + \frac{18}{9900} = \frac{38 \times 99 + 18}{9900} = \frac{3780}{9900} = \frac{21}{55}$ oe	shown		A1	for completion to $\frac{21}{55}$ dep on M1 (<i>NB: this is a "use algebra to show that…"</i> <i>question, so we need to see algebra as well as</i> <i>seeing all the stages of working to award full</i> <i>marks</i>)
					Total 2 marks

14	$\frac{0.515}{6.25}$		2	M1	For either bound correct (used or seen)
	Working required	0.0824		A1	dep on M1 Allow $\frac{103}{1250}$
					Total 2 marks

15 (a)	x -2 -1 -0.5 0 1 1.5 2 y 0 2 4		2	B2 (B)	1 for 1 or 2 correct)
(b)		correct curve	2	B2 For the If r cor	r correct smooth curve. (there is an overlay for e curve – check the line now for (c)) not B2, then B1 for at least 5 points plotted rrectly ft from table dep on B1 or B2 in (a)
(c)	$2x^{3}-6x+4 = -3x \text{ or } x^{3}-3x+2 = -\frac{3}{2}x$ or $y = -\frac{3}{2}x$ seen (allow $-\frac{3}{2}x$)		3	M1	
	$y = -\frac{3}{2}x$ allow a correct line that intercepts with the curve eg of points on line (0, 0), (-1, 1.5), (-1.5, 2.25), (-2, 3)			M1 a c (a c	correct line that intercepts with the curve correct line drawn implies M2)
	Answer dependent on a correct line being drawn	(x=) -1.6		A1ft acc dej NE	cept -1.6 or -1.7 or ft their curve/line intercept p on a correct line being drawn 3: if y value given as well then M2 only Total 7 marks

					1	
16 (a)			-0.5	1	B1	oe eg $-\frac{1}{2}, \frac{-1}{2}, \frac{1}{-2}, -\frac{1}{2}, -\frac{1}{2}$
(b)	(3x-5)y=2 or $(3y-5)x=2$ or			2	M1	remove denominator or get to the stage
	3xy - 5y = 2 or $3xy - 5x = 2$ oe or					$3y-5 = \frac{2}{x}$ or $3x-5 = \frac{2}{y}$
	$3y-5 = \frac{2}{x}$ or $3x-5 = \frac{2}{y}$ oe					
	Correct answer scores full marks (unless from obvi	ous	$\frac{2+5x}{2}$		Aloe	$\frac{2}{-+5}$
	incorrect working)		3x			eg $\frac{2}{3x} + \frac{5}{3}$ or $\frac{x}{3}$ must be in terms
						of x
(c)	$5(x^2-4x)$ or $5(x^2-4x)$ or $5(x-2)^2$			3	M1	
	$5[(x-2)^{2}-(-2)^{2}]\dots \text{ or } 5[(x-2)^{2}-(-2)^{2}\dots$]			M1	$(-2)^2$ can be 2 ² or 4 or $\left(\pm\frac{4}{2}\right)^2$
	or $5(x-2)^2 - 20$ or $5\left\lfloor (x-2)^2 + \frac{5}{5} \right\rfloor$					
	<i>Correct answer scores full marks (unless from obvi incorrect working)</i>	ous	$5(x-2)^2+3$		A1	
						Total 6 marks
Alternative	e mark scheme for 16c					
	$ax^2 - 2abx + ab^2 + c$			3	M1	for multiplying out $a(x-b)^2 + c$ to obtain $ax^2 - 2abx + ab^2 + c$ oe
	2 of:				M1	for equating coefficients and making 2
	$a = 5$ $2ab = 20$ oe $ab^2 + c = 23$ oe					correct statements
		5	$(x-2)^2+3$		A1	

17	$12 = \frac{1}{2} \times 4.6 \times 8.3 \times \sin ABC$ or $\frac{4.6h}{2} = 12$ (<i>h</i> = 5.217)		5	M1	a correct equation for the area to find angle <i>ABC</i> or to find the perpendicular height of the triangle.
	$ABC = \sin^{-1} \left(\frac{12}{\frac{1}{2} \times 4.6 \times 8.3} \right) (= 38.947) \text{ oe or}$ $ABC = \sin^{-1} (0.6286) (= 38.947) \text{ or}$ $ABC = \sin^{-1} \left(\frac{"5.217"}{8.3} \right) (= 38.947) \text{ or}$ $BM^{2} = 8.3^{2} - "5.217"^{2}$			M1	A correct method to find angle <i>ABC</i> or a correct method to find <i>BM</i> ² where <i>CMB</i> is 90°
	$AC^{2} = 4.6^{2} + 8.3^{2} - 2 \times 4.6 \times 8.3 \times \cos("38.947")$ [allow cos39°] or $AC^{2} = 30.6(627)$ $BM = \sqrt{8.3^{2} - "5.217"^{2}}$ (=6.455)			M1	a correct start to the cosine rule to find length AC or a fully correct method for <i>BM</i>
	or $AC = \sqrt{"30.6(6)"}$ or 5.5(3739)			A1	A correct value for AC which can be the square root of $30.6(6)$
	<i>Correct answer scores full marks (unless from obvious incorrect working)</i>	18.4		A1	Allow answers in range 18.4 to 18.45
					Total 5 marks

18	$\sqrt{3}x - x = 6 + 2\sqrt{3}$ or or $x - x\sqrt{3} = -6 - 2\sqrt{3}$ (allow $-2\sqrt{9}$ or $-2(\sqrt{3})^2$ for -6 or $2\sqrt{9}$ or $2(\sqrt{3})^2$ for 6)		4	M1	expanding bracket and collecting terms. Condone one error
	$(x=)$ $\frac{6+2\sqrt{3}}{\sqrt{3}-1}$ or $\frac{-6-2\sqrt{3}}{1-\sqrt{3}}$			A1	oe must be a correct fraction with irrational numerator and denominator
	$(x =) \frac{(6+2\sqrt{3})}{(\sqrt{3}-1)} \times \frac{(\sqrt{3}+1)}{(\sqrt{3}+1)} \text{ or } \frac{(6+2\sqrt{3})(\sqrt{3}+1)}{2} \text{ oe or}$ $\frac{(6+2\sqrt{3})}{(-1+\sqrt{3})} \times \frac{(-1-\sqrt{3})}{(-1-\sqrt{3})} \text{ oe or}$ $\frac{(-6-2\sqrt{3})(1+\sqrt{3})}{(1-\sqrt{3})(1+\sqrt{3})} \text{ oe}$			M1	(indep) Multiplying the numerator and denominator of their fraction by $\sqrt{3}+1$ oe or showing 2 or -2 as the denominator and multiplying the numerator by $\sqrt{3}+1$ oe or rationalising their denominator, so long as it is of the form $p+q\sqrt{3}$ where <i>p</i> and <i>q</i> are non zero integers (condone missing brackets provided meaning is clear)
	Working required	$6 + 4\sqrt{3}$		A1	dep on M1A1M1 with no errors seen
					Total 4 marks

19 (a)	$P = \frac{k}{y^2}$		3	M1	oe (the constant term, k , can be any other letter apart from a or P or y)
	eg $a = \frac{k}{4^2}$ or $k = 16a$			M1	oe
	Correct answer scores full marks (unless from obvious incorrect working)	$P = \frac{16a}{y^2}$		A1	oe eg $P = 16ay^{-2}$ or $P = \frac{4^2a}{y^2}$
(b)	$\sqrt[4]{\frac{16a}{4a}} = c\sqrt{a} \text{ oe eg } \frac{16a}{4a} = c^{2}a \text{ or } 4a = \frac{16a}{c^{2}a} \text{ or } 4a \times c^{2}a = 16a \text{ oe}$ or (when $P = 4a$) $y^{2} = \frac{16a}{4a}$ or $y^{2} = 4$ or $y = \sqrt{\frac{16a}{4a}} (= 2)$ oe		3	M1	ft a correct formula involving the constant term (<i>c</i> used here) and <i>a</i> or ft for an expression or value of y^2 or <i>y</i> given for when $P = 4a$
	$c = \sqrt{\frac{4}{a}} \text{ or } c = \frac{\pm 2}{\sqrt{a}} \text{ or } c = \frac{\pm 2\sqrt{a}}{a}$ oe allow the constant term squared eg $c^2 = \frac{16a}{4a^2} \left(= \frac{4}{a} \right)$			M1	(implies previous M1) a correct value, in terms of a , for the constant term or the constant term squared – need not be simplified
	<i>Correct answer scores full marks (unless from obvious incorrect working)</i>	$P = \frac{4a^2}{x}$		A1	oe eg $P = \frac{16a}{\frac{4x}{a}}$ or $P = \frac{16a^2}{4x}$
					Total 6 marks

20	(a =) 2 (b =) 135	2	B2	If not B2, then B1 for one correct value
				Total 2 marks

					Total 4 marks
	obvious incorrect working)				13.8
	Correct answer scores full marks (unless from	13.7	1	A1	Allow answers in range 13.59 –
	$\cos DBE = \frac{"9.04"}{"9.31"} \text{ or use of cosine rule}$				EB previously
	$\sin DBE = \frac{2.2}{"9.31"}$ or $\sin DBE = \frac{2.2 \sin 90}{"9.31"}$				NB: if using cosine, the student will need to have found <i>DB</i> and
	$\tan DBE = \frac{2.2}{"9.04"}$ or			M1	complete method to find one of tanDBE or sinDBE or cosDBE-
	$(EB =)\sqrt{6^2 + "6.77"^2 + 2.2^2} (= 9.31)$				
	$(EB =)\sqrt{6^2 + "7.11"^2} (= 9.31)$ or				
	$(DB =)\sqrt{("6.77")^2 + 6^2}$ (= 9.04) or			M1	a correct method to find <i>DB</i> or <i>EB</i>
	$(EA =)\frac{2.2}{\sin 18} (= 7.11)$				
21	$(AD =) \frac{2.2}{\tan 18}$ (= 6.77) or		4	M1	a correct method to find AD or AE

22 (a)	$\overrightarrow{ON} = \mathbf{b} + \frac{2}{5}(\mathbf{a} - \mathbf{b})$ or $\overrightarrow{ON} = \mathbf{a} + \frac{3}{5}(\mathbf{b} - \mathbf{a})$ or		2	M1	
		Correct answer scores full marks (unless from obvious incorrect working)	$\frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{b}$		A1	oe eg $\frac{1}{5}(2\mathbf{a}+3\mathbf{b})$ but must be one term in a
						and one in b
(b)	$\overrightarrow{ME} = \frac{8}{5}\mathbf{a} - \frac{4}{5}\mathbf{b}$		3	M1ft	for one of \overrightarrow{ME} , \overrightarrow{NE} or \overrightarrow{MN} or one of
		$\overline{NE} = 6 = 3$ h (all as but simplified)				EM, EN or NM
		$NE = -\frac{\mathbf{a}}{5} - \frac{-\mathbf{b}}{5} \qquad (an \ oe \ bu \ simplified)$				ft (dep on M1 in (a)) their expression for <i>ON</i>
		$\overrightarrow{MN} = \frac{2}{5}\mathbf{a} - \frac{1}{5}\mathbf{b}$				for this mark only $[\overrightarrow{ME} = \overrightarrow{ON} + \frac{6}{5}\mathbf{a} - \frac{7}{5}\mathbf{b}$
						$\overrightarrow{MN} = \overrightarrow{ON} - \frac{4}{5}\mathbf{b}, \overrightarrow{NE} = -\overrightarrow{ON} + \frac{11}{3}\mathbf{a}$]
		$\overrightarrow{ME} = \frac{8}{5}\mathbf{a} - \frac{4}{5}\mathbf{b}$			M1	for two of \overrightarrow{ME} , \overrightarrow{NE} or \overrightarrow{MN} or two of
		\rightarrow 6 3 \rightarrow (γ , γ				EM, EN or NM
		$NE = -\frac{1}{5}a - \frac{1}{5}b$ (all oe but simplified)				must be correct
		$\overrightarrow{MN} = \frac{2}{5}\mathbf{a} - \frac{1}{5}\mathbf{b}$				
		Evidence of a vector method needed	shown		A1	eg $\overrightarrow{ME} = 4 \times \overrightarrow{MN}$ or
						$\overrightarrow{NE} = 3 \times \overrightarrow{MN}$ or $\overrightarrow{ME} = \frac{4}{3} \times \overrightarrow{NE}$
						or showing they are multiples of the same
						vector eg
						$\overrightarrow{MN} = \frac{1}{5} (2\mathbf{a} - \mathbf{b})$ and $\overrightarrow{NE} = \frac{3}{5} (2\mathbf{a} - \mathbf{b})$
						Total 5 marks

23	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 16x - 14$		5	M1	Differentiation to obtain 2 terms with at least 1 correct
	16x - 14 = 10			M1	their $dy/dx = 10$ dep on M1
	(1.5, -9) or $x = 1.5, y = -9$			A1	coordinates of point on curve at which gradient is $10 - $ allow given as coordinates or as <i>x</i> worked out and <i>y</i> worked out if meaning is clear
	eg $y9 = -\frac{1}{10}(x - \frac{3}{2})$ oe or eg $-9 = -\frac{1}{10} \times 1.5 + c$ oe			M1	A correct method to find the equation for line Q using (1.5, –9)
	Correct answer scores full marks (unless from obvious incorrect working)	2x + 20y + 177 = 0		A1	oe where a, b, c are integers eg 10x + 100y + 885 = 0
					Total 5 marks

24	$(S_{20} =)10[2A+19\times11] = 10170$ oe (where A is the $u_{(k-19)}$ th term)		5	M1	
	$A = \left(\frac{10170}{10} - 19 \times 11\right) \div 2 (= 404)$			M1	
	8+(P-1)11 = "404" oe (where <i>P</i> is the number of terms from 20 to the end)			M1	M2 for 8+11×(k -20)="404"
	$P = \frac{"404" - 8 + 11}{11} (= 37)$			M1	
	Working required	56		A1	dep on M1
	ALTERNATIVE METHOD				
	$ (S_k =) \frac{k}{2} [2 \times 8 + (k-1)11] \text{ or } (S_{k-20} =) \frac{(k-20)}{2} [2 \times 8 + (k-21)11] \text{ or} $ $ (u_{k-10} =) 8 + 11(k-20) \text{ or } (u_k =) 8 + 11(k-1) \text{ (allow use of letter other than } k) $		5	M1	for S_k or S_{k-20} or u_k or u_{k-19}
					a and a must be substituted correctly
	$(S_k =) \frac{k}{2} [2 \times 8 + (k-1)11]$ and $(S_{k-20} =) \frac{(k-20)}{2} [2 \times 8 + (k-21)11]$			M1	For correct expressions for both S_k and S_{k-20} or u_k and u_{k-19}
	or $(u_{k-19} =) 8 + 11(k-20)$ and $(u_k =) 8 + 11(k-1)$				
	$10170 = \frac{k}{2}["16" + (k-1)11] - \frac{(k-20)}{2}["16" + (k-21)11] \text{ oe}$			M1	
	or $10170 = \frac{20}{2} ([8+11(k-20)+[8+11(k-1)]))$ oe				
	eg 10170 = $160 + \frac{11}{2}[40k - 420]$ oe			M1	Expanding to obtain a linear equation and collecting terms in <i>k</i>
	eg $440k = 24640$ or $2240 = 40k$ oe		4		
	Working required	56		A1	dep on M1
					Total 5 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom